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Turbulence is the most dominant characteristic of a turbulent flow. Therefore, successful modeling of 
turbulence can significantly improve the results of numerical simulation. Large Eddy Simulation (LES) 
computation of turbulent flows has been achieved a great attention recently since post-processing of LES 
results yields information of both mean flow and statistics of resolved fluctuations which is unique to LES 
and hence can model flows where persistent large-scale vortices results in flow development, e.g. flow 
behind bluff bodies, tumble swirl in engine combustion chambers and prediction of noise from high-speed 
flows (Versteeg 2009). However, this requires to address some issues to control the error sources and 
generate robust LES methodology for industrial applications. 

In this study, a deep-learning approach is used to augment existing LES models using the relevant flow 
features. To this end, Random Forest Regression is developed to map relevant statistical flow-features 
within the LES solution to errors in calculated statistics such as sub-grid scale stresses. In this context, the 
exact solution is given by Direct Numerical Simulation (DNS) data. The capability of the proposed 
framework is examined by posteriori tests. 
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1-INTRODUCTION 

In spite of century-long efforts of fluid dynamists to develop RANS turbulence models, a 
comprehensive model applicable to a wide range of practical applications has so far shown to be elusive. 
This is due to a large extent attributable to differences in the influence of large and small eddies. A different 
approach to the computation of turbulent flows accepts that the larger eddies need to be simulated for each 
problem with a time-dependent simulation. The isotropic behavior of the smaller eddies, on the other hand, 
is easier to capture with a compact model. This is an essential idea behind the large eddy simulation (LES) 
approach to the computation of turbulence. While widely used in research and the academic community, 
LES has had a very limited impact on industrial simulations. The reason lies in the excessively fine grid 
requirements for wall boundary layers. 

LES has been around since the 1960s, but computational resources to consider its application to 
industrially relevant problems have become commonly available recently. Since the Smagorinsky model, 
several sub-grid models have been proposed; most of them are categorized into the Smagorinsky model and 
gradient model. The main drawback of the Smagorinsky model is purely dissipative: the direction of energy 
flow is exclusively from resolved scales towards the sub-grid scales [1]. Leslie and Quarini [2] have shown 
that the gross energy flow in this direction is larger and offset by 30% backscatter – energy transfer in 
reverse direction from the sub-grid scale (SGS) eddies to larger, resolved scales. In contrast, the gradient 
model is not sufficiently dissipative since it limits of small grid size which causes instability. To overcome 
these issues, the dynamic version of these models was formed [3] and [4]. Although modeled SGS stresses 
were found to be much improved by dynamic models, they normally result in the increasing computational 
costs. Experience shows that LES calculation requires prior knowledge of flow so that the grid size can 
appropriately be specified to ensure that the turbulence energy is resolved throughout the domain [5]. This 
indicates that special care required to model LES and interpret the results at higher Reynolds numbers 
which DNS or experimental data is not available. Thus, there is a need for new LES models which perform 
better especially at higher Reynolds number. 

Recently, there has been increasing interest in applying deep learning methods to turbulence modeling. 
Methods of deep learning, which are widely and successfully used in many areas, can be used to find new 
turbulence models. They are useful if they can automatically extract the essential grid-scale flow field 
required for accurate modeling. In recent years there has been a considerable effort to apply machine 
learning in turbulence modeling. Sarghini et al. [6] used an Artificial Neural Network (ANN) to model 
relationships between the grid-scale flow field and the turbulent viscosity coefficient in the mixed model. 
Wang et al. [7] worked on a machine-learning model to predict the discrepancies in the RANS modeled 
Reynolds stresses. Tracey et al. [8] used ANN to predict the source terms from the Spalart-Allmaras 
Reynolds Averaged Navier-Stokes (RANS) model. Moreau et al. [9] used an ANN to predict the sub-grid 
variance in the Cook-Riley model in isotropic turbulence for a scalar field. Ling et al. [10] demonstrated 
that random forest regressors based model could be used to predict the Reynolds stress anisotropy invariants 
more accurately than conventional RANS linear eddy viscosity models. Gamahara and Hattori [11] 
Developed an ANN to establish a functional relation between the grid-scale (GS) flow field and the SGS 
stress without any assumption of the form of function. They showed that an ANN could establish a model 
similar to the gradient model. 
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The present work aims to improve LES prediction. Random Forest Regression Model is used to 
develop an algorithm that maps local SG flow-field information to errors in SGS prediction from a LES 
simulation. Random Forest Regression (RFR) is used to predict a continuous target as a non-linear function 
of features. The parameters of the algorithm are learned using data where the target values are known so 
that the machine can make predictions about data where the target is unknown. This unique is particularly 
important for the improvement of LES models at higher Reynolds Number where the exact data is not 
available. 

2-GOVERNING EQUATIONS 

The continuity and momentum equation for an incompressible viscous fluid in the absence of external 
forces is given by: 

 𝑑𝑑𝑑𝑑𝑑𝑑 (𝜌𝜌𝑢𝑢𝑖𝑖) = 0           (1) 

 
𝜌𝜌
𝐷𝐷𝑢𝑢𝑖𝑖
𝐷𝐷𝐷𝐷

= −
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

+ 𝑑𝑑𝑑𝑑𝑑𝑑(𝜇𝜇 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑢𝑢𝑖𝑖  ) 
          (2) 

Using a filter function, ∅�(𝑥𝑥, 𝑡𝑡) = ∫𝐺𝐺(𝑥𝑥′, 𝑥𝑥,∆)∅(𝑥𝑥′, 𝑡𝑡)𝑑𝑑𝑥𝑥′, one can, by exploiting the linearity of the 
filtering operation, swap the order of the filtering and differentiation with respect to time, as well as the 
order of filtering and differentiation with respect to space coordinates. Here ∆ is the grid size. Filtering of 
Equation (1) and (2) yields the LES continuity equation: 

 𝑑𝑑𝑑𝑑𝑑𝑑 (𝜌𝜌𝑢𝑢�𝑖𝑖) = 0           (3) 

 𝐷𝐷𝑢𝑢�𝑖𝑖
𝐷𝐷𝐷𝐷

+ 𝑑𝑑𝑑𝑑𝑑𝑑�𝜌𝜌𝑢𝑢𝚤𝚤𝑢𝑢𝚥𝚥������ = −
𝜕𝜕𝑝̅𝑝
𝜕𝜕𝑥𝑥𝑖𝑖

+ 𝜇𝜇 𝑑𝑑𝑑𝑑𝑑𝑑(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔( 𝑢𝑢�𝑖𝑖)) 
          (4) 

Equation set (3) and (4) should be solved to yield the filtered velocity field 𝑢𝑢� and filtered pressure field 𝑝̅𝑝. 
Convective terms of the form div �𝜌𝜌𝑢𝑢𝚤𝚤𝑢𝑢𝚥𝚥������ on the left-hand side need to computed; however, only the filtered 
velocity field and pressure field are available. The filtered Naiver-Stocks equation can be rearranged as: 

 𝜌𝜌 𝐷𝐷𝑢𝑢�𝑖𝑖
𝐷𝐷𝐷𝐷

+ 𝑑𝑑𝑑𝑑𝑑𝑑�𝜌𝜌𝑢𝑢�𝑖𝑖𝑢𝑢�𝑗𝑗� = − 𝜕𝜕𝑝̅𝑝
𝜕𝜕𝑥𝑥𝑖𝑖

+ 𝜇𝜇 𝑑𝑑𝑑𝑑𝑑𝑑(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (𝑢𝑢�𝑖𝑖)) − (𝑑𝑑𝑑𝑑𝑑𝑑�𝜌𝜌𝑢𝑢𝚤𝚤𝑢𝑢𝚥𝚥������ − 𝑑𝑑𝑑𝑑𝑑𝑑�𝜌𝜌𝑢𝑢�𝑖𝑖𝑢𝑢�𝑗𝑗�)                  (5) 

 
where 𝜏𝜏𝑖𝑖𝑖𝑖 = 𝜌𝜌𝑢𝑢𝚤𝚤𝑢𝑢𝚥𝚥����� − 𝜌𝜌𝑢𝑢�𝑖𝑖𝑢𝑢�𝑗𝑗 is due to the filtering operation.  In recognition of the fact that a substantial 
portion of 𝜏𝜏𝑖𝑖𝑖𝑖 is attributable to convective momentum transport due to interactions between the unresolved, 
SGS eddies; these stresses are known as SGS stresses. A turbulence model constructs a mapping from the 
mean velocity field 𝑢𝑢� to the SGS stress field 𝜏𝜏𝑖𝑖𝑖𝑖 aims to close the LES equations. 

3-SUBGRID STRESS MODELLING 

To close the equations for the filtered velocity, a model for the SGS stress tensor 𝜏𝜏𝑖𝑖𝑖𝑖 is needed. The 
simplest model is that proposed by Smagorinsky [12], which also forms the basis for several of the more 
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advanced models. The model can be evaluated in two parts. First, the linear eddy-viscosity model. The 
whole stress can be modeled as a single SGS turbulence model: 

 𝜏𝜏𝑖𝑖𝑖𝑖 = −2𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖̅𝑖𝑖𝑖 +
1
3
𝜏𝜏𝑖𝑖𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖           (6) 

which is used to relate the SGS stress to the filtered rate of strain. The coefficient of proportionality, 𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆 
is the eddy viscosity of the sub-grid motions. Second, by analogy to the mixing-length hypothesis the eddy 
viscosity is modeled as the SGS viscosity: 

 𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆 = 𝜌𝜌(𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆∆)2|𝑆𝑆̅|           (7) 

Where 𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆 is the SGC coefficient. According to the eddy-viscosity model (Equation (6)), the rate of 
transfer of energy to the GS motions is [5]: 

 ƿ𝑟𝑟 =
𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆
𝜌𝜌

|𝑆𝑆̅|2           (8) 

For the Smagorinsky and other eddy-viscosity models with 𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆 > 0, the direction of this energy transfer is 
everywhere, from the filtered motions to the GS motions: there is no backscatter. 

 
Figure 1. Computational domain and coordinate system of the Channel Flume 

3-1 Simulation Setup 

Fully developed channel flow, which is a classic LES model study is used here for the computational 
domain as shown in Figure 1. The benchmark for evaluating the accuracy of LES is the DNS of turbulent 
channel reported by Moin and Moser [13,14]. The bulk Reynolds number, 𝑅𝑅𝑅𝑅𝑏𝑏 =  𝑈𝑈𝑏𝑏ℎ/𝜈𝜈, is used where: 

 
𝑈𝑈𝑏𝑏 =

1
ℎ
� < 𝑢𝑢 > 𝑑𝑑𝑑𝑑
ℎ

0
 

          (9) 

And ℎ is the channel height. For the LES simulation, 𝑅𝑅𝑅𝑅𝑏𝑏 is defined and 𝑅𝑅𝑅𝑅𝜏𝜏 is computed. The target value 
is 𝑅𝑅𝑅𝑅𝜏𝜏 = 395. It is noted that the friction Reynolds number is defined as: 

 𝑅𝑅𝑅𝑅𝜏𝜏 =  𝑢𝑢𝜏𝜏𝛿𝛿/𝜈𝜈         (10) 

672



TFEC-2020- 32138 

 

 
 

 
Where 𝑢𝑢𝜏𝜏 is the friction velocity and 𝛿𝛿 = ℎ/2. The number of grid points, �𝑁𝑁𝑥𝑥 ,𝑁𝑁𝑦𝑦,𝑁𝑁𝑧𝑧� = (120,100,90), 
and 𝑦𝑦+ = 0.97. Periodic boundary conditions are applied in x and z directions. The solver pimpleFOAM, 
provided as part of OpenFOAM, was used to solve the equations derived in sections continuity and Navier-
Stokes. The Wall-Adapting Local Eddy-Viscosity (WALE) model is used to model the eddy viscosity. 
 

 
Figure 2. Isosurfaces of the Q-criterion ( Q = 0.004) colored by the streamwise instantaneous vorticity at 𝑅𝑅𝜏𝜏 =395 

3-2 LES Results 

Figure 2 illustrates the instantaneous vorticity in the x-direction and is shown that coherent vortex structures 
built up inside the boundary layer, which is essential for momentum exchange and turbulence production 
in wall-bounded turbulent flows. Figure 3 depicts the mean velocity profile which is presented in global 
coordinates, scaled with the bulk velocity 𝑈𝑈𝑏𝑏. LES results underpredict the mean velocity profile especially 
for the region of 0.1 < 𝑦𝑦

𝛿𝛿
< 0.3. To address this issue, it is necessary to evaluate the results in the wall 

coordinates and scaled with the friction velocity. The data is shown on the right plot of Figure 3. In the 
viscous sub-layer there are only a few points located there in the LES simulation; thus cannot resolve it 
adequately. In the buffer region, the results begin to diverge from the DNS leading to underprediction in 
the Log-Law region. 

Figure 3. profiles of the mean of the normalized streamwise component of velocity at 𝑅𝑅𝜏𝜏 =395 
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 Figure 4. Profiles of the SGS stress, 𝜏𝜏11  at 𝑅𝑅𝜏𝜏 =395 

Evaluation of diagonal components of the SGS tensors shows that the LES simulation overpredicts the 
streamwise velocity fluctuations and shifts the pick away from the wall (Figure 4). The behavior is, 
however, different for wall-normal and spanwise velocities, and LES simulations strongly underpredict the 
fluctuations, as shown in Figures 5 and 6.  

Figure 5. Profiles of the SGS stress, 𝜏𝜏22  at 𝑅𝑅𝜏𝜏 =395 

Analyzing the SGS shear stress shows the LES result predicts the location of the peak with very good 
accuracy, but significantly under-estimates the values of the shear stress in the viscous wall region (Figure 
7). For y+ > 100, LES produces a linear profile that underpredicts the DNS data.  

Given the LES simulation discrepancies with DNS, it is useful to review the physical basis of the two 
components of the model. The first component is the basic Smagorinsky model assumption that the SGS 
stress 𝜏𝜏𝑖𝑖𝑖𝑖 , is aligned with the filtered rate of strain 𝑆𝑆𝑖̅𝑖𝑖𝑖, Equation (6). However, Pope [5] showed that there 
is a much weaker correlation between 𝜏𝜏𝑖𝑖𝑖𝑖 and 𝑆𝑆𝑖̅𝑖𝑖𝑖 than the near-perfect correlation implied by the 
Smagorinsky model. Hence no value of the Smagorinsky coefficient, 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠, can yield the correct levels both 
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of 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠 and the rate of energy transfer of ƿ𝑟𝑟 = 𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆
𝜌𝜌

|𝑆𝑆̅|2. The second component of the model - the dynamic 

aspect - is based on the assumption that the Smagorinsky coefficient is independent of the filter width. This 
assumption is well-founded for the case of the filter being within the inertial subrange of high-Reynolds-
number turbulence. However, the success of the model is attributed to its behavior for flow regimes for 
which the assumption lacks justification - laminar flow, transitional flow, and flow in the viscous wall 
region. 

 

Figure 6. Profiles of the SGS stress, τ_33   at R_τ =395 

Figure 7. Profiles of the SGS stress, 𝜏𝜏12  at 𝑅𝑅𝜏𝜏 =395 

4-METHODOLOGY OF THE DEEP LEARNING MODEL 

The overall objective of this work is to create, using deep learning, a model that maps the GS flow 
field predicted by LES linear eddy viscosity model to errors in the prediction of SGS stress. A functional 
mapping can be obtained from the flow features obtained from LES models to 𝜏𝜏𝐸𝐸 by using deep learning: 
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{𝐹𝐹} →  𝜏𝜏𝐸𝐸   
And then: 

 𝜏𝜏𝑅𝑅 =  𝜏𝜏𝐿𝐿𝐿𝐿𝐿𝐿 +  𝜏𝜏𝐸𝐸         (11) 
 

𝜏𝜏𝑅𝑅 is the actual SGS stress calculated from DNS and 𝜏𝜏𝐸𝐸 is the SGS stress discrepancies. 𝜏𝜏𝐸𝐸 can be 
calculated by training on DNS data from similar flows.  

 

Figure 8. Thee method of creating an algorithm that maps LES flow-field features to model error 

Figure 8 illustrates the proposed framework for creating this model. The 𝜏𝜏𝑅𝑅, predictions 𝜏𝜏𝐿𝐿𝐿𝐿𝐿𝐿, and feature 
set, {𝐹𝐹}, are used to train a deep learning map that takes as inputs a subset of {𝐹𝐹} and outputs a model error, 
a measure of the discrepancy between prediction and actual. 

4-1-Random Forest Regression Scheme 

Random Forest Regression is the problem of learning a functional relationship between input features 
and an output target using training data where the specific functional form learned depends on the choice 
of model. The parameters of the function are learned using data where the target values are known so that 
the algorithm can make predictions about data where the target is unknown. Therefore, the goal of a 
regression model is to learn to predict an output based on an input set of features. More formally, Random 
Forest is a collection of tree predictors, ℎ(𝒙𝒙,𝜃𝜃𝑘𝑘), where 𝒙𝒙 represents the observed input vector and 𝜃𝜃𝑘𝑘 are the 
independent random vectors. For regression, the random forest prediction is the unweighted average over 
the collection: ℎ(𝑥𝑥) = (1

𝑘𝑘
)∑ h(x,𝜃𝜃𝑘𝑘)𝑘𝑘

1  [15]. An advantage of the Random Forest Regression is that it can 
provide importance scores for inputs after training, which can be further used to assist the modelers in 
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improving the existing turbulence models. Besides, Random forest has robust performances with only a 
small set of training parameters, which is in contrast to the commonly used Neural Networks.  

4-2-CHOICE OF INPUT VARIABLES 

A set of velocity gradient and distance from the wall {∇u, y}, was suggested by Gamahara et al. [11] 
for successful learning based on correlation coefficients. Therefore, in the rest of the paper, the set of input 
variables is fixed to {∇u, y}. The RFR algorithm is trained by the DNS data of the channel flow at 𝑅𝑅𝑅𝑅𝜏𝜏 =
180 and then the data at 𝑅𝑅𝑅𝑅𝜏𝜏 = 395 is used as the test data set. Finally, the error between prediction and 
actual SGS tensor, 𝜏𝜏𝐸𝐸 , obtained from the test is implemented to pimpleFOAM and the LES simulation 
repeated for 𝑅𝑅𝑅𝑅𝜏𝜏 = 395 to investigate whether the error predicted by RFR would improve the LES model. 

5- POSTERIORI TESTS 

LES is a high-fidelity model to be used for high Reynolds number flows which are not accessible by 
DNS. Thus, when applying a deep learning model to LES of high Reynolds number flows, no training data 
are available from DNS. In this regard, it is of importance to check whether an RFR algorithm trained at 
low Reynolds numbers can make predictions at high Reynolds numbers. The proposed framework is 
examined by posteriori tests to determine whether these improved SGS tensor values would translate to 
improved mean velocity predictions. 

 

Figure 9. Comparison between 𝜏𝜏11 predicted by the RFR trained at 𝑅𝑅𝑅𝑅𝜏𝜏 = 395 with LES model . y = 0.1. 

 

Figure 10. Comparison between 𝜏𝜏12 predicted by the RFR trained at 𝑅𝑅𝑅𝑅𝜏𝜏 = 395 with LES model. y = 0.1. 

First, details of the learning results for 𝑅𝑅𝑅𝑅𝜏𝜏 = 395  are investigated. Figures 9 and 10 compare the 
distributions of the SGS stress obtained by LES simulations, and that predicted by trained RFR. The plane 
of y = 0.1 is chosen where the rms amplitudes of all components are nearly largest. It is clear from Figure 
8 that RFR improves the prediction of the first normal component of SGS tensor. However, there is a slight 
change in predicting SGS shear stress at this plane as shown in Figure 10. Next, these two SGS components 
investigated along with the channel height, as shown in Figure 11. 
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Figure 11. Comparison of the SGS stress predicted by LES with Smagorinsky model and RFR model; Left: 𝜏𝜏11, Right: 𝜏𝜏12 

It is evident from Figure 11 that RFR model drastically improves the streamwise velocity fluctuations, 
especially in the vicinity of the pick region as well as at  𝑦𝑦

𝛿𝛿
> 0.6, which the Smagorinsky model declines 

to predict accurate fluctuations. Figure 11 shows with an exception near the pick region, the trained 
algorithm predicts the SGS shear stress values, 𝜏𝜏12, close to the Smagorinsky model. Finally, Figure 12 
compares the mean flow obtained by LES simulations. LES results underpredict the mean velocity profile 
especially for the region of 0.1<y/δ<0.4. As was explained before, in the buffer region, results begin to 
diverge from the DNS leading to underprediction in the Log-Law region. However, the mean flow obtained 
by the Smagorinsky model trained by RFR algorithm is in reasonable agreement with DNS except that it 
slightly underestimated for y/δ >0.8. Therefore, it can be concluded that the RFR model has an advantage 
over the Smagorinsky model for prediction of the mean flow. 

 

Figure 12. Comparison of mean flow obtained by LES with Smagorinsky model and RFR model 

6- CONCLUSION 

A new deep-learning-based approach was proposed to improve Large Eddy Simulations of Turbulent flows. 
The new framework is based on a trained Random Forest Regression algorithm using Direct Numerical 
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Simulation to make predictions when the exact data is not available due to high CPU cost. A set of flow 
features obtained from LES was used to train the RFR algorithm and then obtained results were 
implemented to PimpleFOAM, which is an OpenFOAM solver for LES simulations. A posteriori evaluation 
showed that the RFR was able to predict the mean flow in a channel with a considerable improvement in 
contrast to the Smagorinsky model. Although the deep-learning approach showed an advantage over the 
LES model, for this novel approach to become a practical turbulence model, RFR model needs to be trained 
and tested across a much broader set of flows. 
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